翻訳と辞書 |
Fifth-order Korteweg–de Vries equation : ウィキペディア英語版 | Fifth-order Korteweg–de Vries equation A fifth-order Korteweg–de Vries (KdV) equation is a nonlinear partial differential equation in 1+1 dimensions related to the Korteweg–de Vries equation.〔Andrei D. Polyanin, Valentin F. Zaitsev, HANDBOOK of NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS, SECOND EDITION p 1034, CRC PRESS〕 Fifth order KdV equations may be used to model dispersive phenomena such as plasma waves when the third-order contributions are small. The term may refer to equations of the form : where is a smooth function and and are real with . Unlike the KdV system, it is not integrable. It admits a great variety of soliton solutions.〔(【引用サイトリンク】 title=Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework )〕 ==References== 〔
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Fifth-order Korteweg–de Vries equation」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|